
i 

 

  

Ray Tracing Dielectrics with Spatially 

Varying Properties 

 

By 

Ahmad Ali Elhoni 

 

Supervisor 

Dr. Mohammed M. Elammari 

 

Co-Supervisor 

Dr. Kevin G. Suffern 

 

This Thesis was submitted in Partial Fulfillment of the 

Requirements for Master's Degree of Science in Computer 

Science. 

 

University of Benghazi 

Faculty of Information Technology 

 
 

June 2019 
 



ii 

 

Copyright 

Copyright © 2019. All rights reserved, no part of this thesis may be reproduced in any 

form, electronic or mechanical, including photocopy, recording scanning, or any 

information, without the permission in writing from the author or the directorate of 

graduate studies and training University of Benghazi. 

 

محفوظة . لا يسمح اخذ اى معمومة من  اى جزء من ىذه الرسالة عمى  2019حقوق الطبع 
ىيئة   نسخة الكترونية او ميكانيكية بطريقة التصوير او التسجيل او المسح من دون الحصول  

  .عمى إذن كتابي من المؤلف أو إدارة الدراسات العميا والتدريب جامعة بنغازي
 

  



iii 

 

Approval 

University of Benghazi                      Faculty of Information Technology  
 

 

Department of Computer Science 

 

Ray Tracing Dielectrics with Spatially Varying 

Properties 
 

By 

Ahmed Ali Elhoni 

 

This Thesis was Successfully Defended and Approved on 15.6.2019 

 

Supervisor: Dr. Mohammed M. Elammari 

 

Signature: ……………………….…………………………….. 

 

 

Co-Supervisor: Dr. Kevin G. Suffern 

 

Signature: ……………………….…………………………….. 

 

 

 

Dr………………..……….…..…….     ( Internal examiner ) 

Signature: ……………………….…………………………….. 

Dr……………..…………….………    ( External examiner)             

Signature: …………………………………..…………………. 

 

(Dean of Faculty)                (Director of Graduate studies and training) 

 



iv 

 

 

Quranic verse 

 

In The Name of Allah, The Most Beneficent, The Most Merciful 

" He has  taught you that which you did not know, and 

ever has the favor of Allah upon you been great " 

 

  



v 

 

Acknowledgments 

First and foremost, I would like to express my deepest gratitude to God 

almighty- ALLAH for giving me the strength, blessing and the composure to finish this 

work. All praises are due to him, words actually will never be enough to express how 

grateful I am.  

I would like to convey my sincere thankfulness to my honorable supervisor Dr. 

Mohammed Elammari for his guidance, assistance, cordial cooperation and providing 

valuable advice and constructive criticism in the successful completion of this task. 

My heartfelt appreciation deepest regard to my co-supervisor Dr. Kevin Suffern, 

University of Technology, Sydney–Australia, for his constant guidance, helpful advice 

and continuous encouragement throughout the progress of this work, without which the 

work could not have been completed, even my most profound gratitude would not be 

enough.    

I would like to express my sincere acknowledgment to all my academic teachers 

of Faculty of Information Technology at University of Benghazi, especially honorable 

Dean Dr. Tawfig Tawill who encouraged me to prepare and submit this thesis in due 

respect. I also owe a great deal of gratitude to Dr. Omer Elsalabi and Dr. Kenz A. 

Bozed, the proposal examiners, for their encouragement and insightful comments and 

durable questions. 

Most importantly, I wish to express my appreciation and gratitude to my noble 

parents for their guidance, sacrifice and continuous encouragement throughout my years 

of study and my life in general.  I also extend my appreciation to my sisters for 

supporting me spiritually during writing this thesis. I must express my very profound 

thanks to my faithful aunt Namah, who has inspired me with her hope, love and support. 

 

Ahmad Elhoni 

 

 

 



vi 

 

Contents  

Contents 

Copyright .................................................................................. ii 

Approval .................................................................................. iii 

Quranic verse ............................................................................ iv 

Acknowledgments ..................................................................... v 

Contents ................................................................................... vi 

Symbols ................................................................................... x 

Table of Figures ....................................................................... xii 

Abstract .................................................................................. xvi 

1 Introduction ........................................................................... 1 

1.1 A Historical Overview ............................................................................................ 1 

1.2 Problem Statements ................................................................................................. 1 

1.3 Motivation ................................................................................................................. 1 

1.4 Research Aim and Objectives ................................................................................. 2 

1.5 Research Methodology ........................................................................................... 3 

1.6 Limitations ................................................................................................................ 3 

1.7 Thesis Organization ................................................................................................. 4 

2 Background Material .............................................................. 5 

2.1 Index of Refraction .................................................................................................. 5 

2.2 Surface Physics ......................................................................................................... 6 

2.2.1 Specular Reflection and Transmission ........................................... 6 

2.2.2 Fresnel Equations .............................................................................. 8 

2.2.3 Glossy Reflection and Transmission .............................................. 9 

2.3 Color Filtering ........................................................................................................ 11 



vii 

 

2.4 Noise-Based Textures ............................................................................................ 13 

2.4.1 Lattice Noise .................................................................................... 13 

4.4.2 Spectral Synthesis ........................................................................... 14 

2.4.3 Wrapped Noise Textures ............................................................... 15 

4.5 Monte Carlo Integration ....................................................................................... 16 

3 Literature Review ................................................................. 18 

3.1 Whitted (1980) An Improved Illumination Model for Shaded 

Display ..................................................................................................................................... 18 

3.2 Kajiya (1986) The Rendering Equation ............................................................... 18 

3.3 Perlin  (1985) An Image Synthesizer and Peachy (1985) Solid 

Texturing of Complex Surfaces ............................................................................................ 18 

3.4 Evans and Rosenquist (1985) F = ma Optics ..................................................... 19 

3.5 Suffern and Getto (1991) Ray Tracing Gradient Index Lenses ........................ 19 

3.6 Lee and Uselton (1991) A Body Color Model: Light Absorption 

Through Translucent Media ................................................................................................. 19 

3.7 Ament, Bergman, and Weiskopt (2014) Refractive Radiative Transfer 

Equation .................................................................................................................................. 19 

4 Techniques .......................................................................... 20 

4.1 Overview ................................................................................................................. 20 

4.2 Whitted Ray Tracing ............................................................................................. 20 

4.3 Path Tracing ............................................................................................................ 22 

4.4 Spatially Varying Filter Color .............................................................................. 23 

4.5 Spatially Varying Index of Refraction ................................................................. 24 

4.6 Runge-Kutta Integration ....................................................................................... 25 

5 Simple Ray Tracer ............................................................. 27 



viii 

 

5.1 Textured filter color ............................................................................................... 27 

5.2 Spatially Varying Dielectrics ................................................................................ 28 

5.2.1 Surface Variation ............................................................................. 28 

5.2.2 Volume Variation ............................................................................ 29 

6 Realistic Ray Tracer .............................................................. 51 

6.1 LuxRender .............................................................................................................. 51 

6.1.1 Generalized Luneberg lenses ........................................................ 51 

6.1.2 Gaussian spheres ............................................................................. 52 

6.2 Vase Case Study ..................................................................................................... 52 

7 Discussion ......................................................................... 55 

7.1 Textured Filter Colors ........................................................................................... 55 

7.2 Surface Based Variable Index of Refraction ....................................................... 55 

7.3 Interior Variable Index of Refraction .................................................................. 55 

7.3.1 Generalized Luneberg Lenses ....................................................... 55 

7.3.2 Inverse r spheres ............................................................................. 56 

7.4 Vase Case Study ..................................................................................................... 58 

8 Conclusion ........................................................................... 59 

REFERENCES ....................................................................... 60 

APPENDIX ............................................................................ 62 

A1 Data Flow diagram ................................................................................................ 62 

A2 Wolfram Mathematica .......................................................................................... 63 

A2.1 Code .................................................................................................. 63 

A2.2 Plot .................................................................................................... 64 

A3 C++ Source Code .................................................................................................... 64 



ix 

 

A3.1 RungeKutta.cpp .............................................................................. 64 

A3.2 Inverse r sphere ............................................................................... 65 

A4 Autodesk Maya ...................................................................................................... 67 

 68 .................................................................................... الملخص

 69 ..............................................................................الواجية العربية

 

  



x 

 

   

Symbols 

c 

η 

p 

n 

θ i 

θ t 

ω o 

ω r , r 

ω t , t 

η in 

η out 

 

θ c 

k r 

k t 

e 

L 

c f 

p 

f(x)  

 

*a, b+ 

I 

 I  

r o 

dy/dx 

 

C 

R 

k 

c, d 

θ 

c 

e 

d 

speed of light 

index of refraction 

ray-object hit point 

normal to object surface at p 

angle of incidence 

angle of transmission 

incident ray direction 

reflected ray direction 

transmitted ray direction 

internal index of refraction 

external index of refraction 

pi 

critical angle for total internal reflection 

Fresnel reflectance 

Fresnel transmittance 

specular exponent 

radiance 

filter color 

a 3D point for evaluating noise 

an arbitrary function of the variable x 

interval membership 

a closed interval 

the definite integral of x [a, b] 

Monte Carlo estimator for I   

primary ray 

derivative of y with respect to x 

partial derivative of η with respect to x 

Luneberg sphere parameter 

Luneberg sphere radius 

inverse sphere parameter 

logarithmic spiral parameters 

logarithmic spiral angle 

inverse sphere center 

camera eye point in inverse sphere 

initial spiral direction 

5 

5 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

7 

8 

8 

10 

12 

12 

14 

16 

16 

16 

16 

17 

21 

25 

25 

29 

29 

32 

32 

32 

33 

33 

33 



xi 

 

p 

x  w , y w , z w 

 s 

θs 

b , b 
 

R 

L 

S 

t  

i , k 

θ 

θR 

,    

ω o 

 

+∞ 

 

 

 

a , b 

η s 

hit point of spiral on sphere surface 

world coordinates 

initial spiral direction angle 

initial spiral angle 

2D orthonormal basis vectors in spiral plane 

inverse sphere radius 

distance between p and e 

distance between c and e 

vector used in calculations 

unit basis vectors 

arbitrary angle along a spiral 

angle where spiral hits sphere 

angles used to compute p  

tangent vector to spiral at p   

angle used to compute ω o 

positive infinity 

approach 

approach from above 

plus or minus 

parameters in the η formula for Gaussian spheres 

η at the surface of an inverse r sphere 

33 

33 

33 

33 

34 

35 

35 

35 

35 

35 

35 

35 

36 

38 

38 

39 

39 

41 

42 

52 

57 

 

 

  



xii 

 

Table of Figures 

Figure 1. Reflected and transmitted ray directions at the boundary between two 

transparent media, Suffern (2007), p. 564. .................................................................. 6 

Figure 2 (a) Direction change of transmitted ray t when η > 1, (b) Direction 

change of t when  η < 1. ................................................................................................. 7 

Figure 3. Total internal reflection: (a) θ i = θ c ; (b) θ i > θ c. ................................... 8 

Figure 4. Fresnel reflectance and transmittance for glass as a function of 

incidence angle, Suffern (2007), p. 596. ....................................................................... 9 

Figure 5. Reflectance and transmission: diffuse on the left, glossy in the middle, 

and specular on the right. ........................................................................................... 10 

Figure 6. The reflected ray direction ω i makes an angle θ r with the direction of 

mirror reflection r , Suffern (2007), p. 530................................................................. 10 

Figure 7. Diffuse sphere (e = 1.0) rendered with 100 rays per pixel. .................... 11 

Figure 8. Glossy transmission material rendered with e = 10000.0. ............................. 11 

Figure 9. Plots of c d for various values of c , Suffern (2007) p. 598. .................... 12 

Figure 10. A concave lens rendered with cf = (0.65, 0.45, 0.0), Suffern (2007), p. 

608. ................................................................................................................................. 13 

Figure 11. 3D infinite lattice, Suffern (2007), p. 694. ............................................... 13 

Figure 12. (a) 2D slice of tri-cubic interpolated lattice noise; (b) plot of the lattice 

noise along the middle row of pixels in (a). ............................................................. 14 

Figure 13. Terms in the fractal_sum function, and their sums. ............................ 15 

Figure 14. 2D cross sections of the fractal_sum function with 1 octave in (a), 2 

octaves in (b), and 8 octaves in (c). ............................................................................ 15 

Figure 15. Example of a wrapped texture. ............................................................... 16 

Figure 16. (a) equally spaced sample points; (b) uniformly distributed random 

sample points; (c) randomly distributed sample points for importance 

sampling. ....................................................................................................................... 16 

Figure 17. Types of dielectric materials. .................................................................. 20 



xiii 

 

Figure 18. Transparent objects with reflected and transmitted rays, Suffern 

(2007), p. 569. ................................................................................................................ 21 

Figure 19. The ray tree that corresponds to Figure 18 , Suffern (2007), p. 569... 21 

Figure 20. Glass blocks with η = 1.5, color filtering, and the Fresnel Equations 

for reflection and transmission: (a) max depth = 4, (b) max depth = 15 , Suffern 

(2007), pp. 635 and 616. ............................................................................................... 22 

Figure 21. Gray scale image of the Cornell box scene originally path traced in 

color by Steve Parker with 100498 rays per pixel. (a) ray hits the light, which is 

the only source of radiance, (b) ray terminates at the maximum recursion depth 

of five, (c) ray leaves the scene. Suffern (2007), p. 544. ........................................... 23 

Figure 22. When we sample a spatially varying texture along a ray and use 

Equation (9) for the filter color, we approximate the texture as slabs of constant 

filter color. This figure is schematic only; the 3D filter color in the surrounding 

dielectric can vary in any way. ................................................................................... 23 

Figure 23. A curved ray path through a dielectric with a spatially varying index 

of refraction. .................................................................................................................. 24 

Figure 24.  Here, the heights of the slabs represent the constant values of the ior 

between the sample points on the ray. This is another schematic diagram. ....... 24 

Figure 25. (a) Dielectric sphere with a fractal sum rainbow colored filter, (b) a 

wrapped noise texture. ................................................................................................ 27 

Figure 26. Path traced objects, with different shaders. ......................................... 28 

Figure 27. (a) A dielectric sphere and a reflective sphere ray traced with 

max_depth = 3, (b) the scene in part (a) rendered with a textured surface ior on 

the dielectric sphere. .................................................................................................... 29 

Figure 28. Parallel rays that intersect a Luneberg lens all exit at  a single point.

 ........................................................................................................................................ 29 

Figure 29. (a) Internal and external rays for a Luneberg sphere with C = 3.0 and 

r o = 3.0, (b) ray traced scene with this sphere. ........................................................ 30 



xiv 

 

Figure 30. (a) Internal and external rays for a Luneberg sphere with C = 10.0 

and R = 3.0, (b) ray traced scene with this sphere. .................................................. 31 

Figure 31. (a) Dielectric sphere with η = 3.0, (b) reproduction of Figure 6.6(b). 31 

Figure 32. A logarithmic (or exponential) spiral. ................................................... 32 

Figure 33. Spiral configuration in an inverse sphere. The white ellipsoid is the 

circular disk that contains the spiral. It’s defined by c , e , and d , and has 

radius R which is the sphere radius. The horizontal line is parallel to the (x w , z 

w) plane; the angle  s is used to define the spiral through its initial direction. 33 

Figure 34. Unit vectors used for calculating the spiral. The green squares 

indicate vectors that are perpendicular. ................................................................... 34 

Figure 35. Quantities that we need to compute the equation of the spiral, and 

the point p where it intersects the sphere surface. .................................................. 35 

Figure 36. The triangle we use to compute p . ....................................................... 36 

Figure 37. The quantities we need to compute the tangent vector ω o to the 

spiral at p . ..................................................................................................................... 37 

Figure 38. Eight spirals in the same plane that start at e , and go in different 

directions. Two of the spirals are circles, and two are straight lines. This figure 

also shows how the two perpendicular (dashed) straight lines through e , and 

parallel to b and b , divide the disk inside the sphere into four quadrants I, II, 

III, and IV. ...................................................................................................................... 39 

Figure 39. Plot of   R as a function of  s . ............................................................. 40 

Figure 40. Plots of tightly wound spirals with  s = 0.1 in (a) and  s = 0.01 in 

(b). ................................................................................................................................... 41 

Figure 41. The scene ray traced in the images below. The inverse sphere in the 

middle is centered on the world origin, and has radius 4.0. The x w axis points 

to the right, the y w axis points out of the paper, and the z w axis points straight 

down. ............................................................................................................................. 42 

Figure 42. A set of parallel rays entering an inverse sphere. ................................ 43 



xv 

 

Figure 43. (a) A 180o fisheye camera image when the camera is inside the 

sphere, (b) a zoomed image from inside the rectangle in (a). ............................... 44 

Figure 44. Figure 43 rendered with black pixels for the in-going rays. .............. 44 

Figure 45. Two 180o fisheye camera images where the camera is inside the 

sphere. ............................................................................................................................ 45 

Figure 46. Horizontal fisheye camera images with fov = 360 o in (a), 180 o in 

(b), 90 o in (c), 32 o in (d), 16 o in (e), and 2o in (f). The camera is located at (2.0, 

0.0, 0.0), and the look-at point is (2.0, 0.0, -2.0). ....................................................... 46 

Figure 47. Expanded strips cross the centers of Figure 46 parts (e) and (f), with 

(e) on the top. ................................................................................................................ 47 

Figure 48. Correctly rendered versions Figure 6.25(a) in (a) and 6.25(e) in (b). 47 

Figure 49. Horizontal fisheye camera images looking radially out of the sphere 

with fov = 180 o in (a), and fov = 360 o in (b). .......................................................... 48 

Figure 50. Correctly rendered version of Figure 6.25(b). ...................................... 48 

Figure 51. Fantasy version of Figure 6.28(b) rendered with the fov = 3600o. .... 49 

Figure 52. (a) Pinhole camera image, (b) fisheye camera image with fov = 360 o.

 ........................................................................................................................................ 49 

Figure 53. Two fisheye camera images where the inverse sphere has been 

raised         vertically. ................................................................................................... 50 

Figure 54. Luneberg spheres rendered with C = 3.0 in (a) and C = 2.0 in (b). .... 51 

Figure 55. Gaussian spheres rendered with a = 1.25 in (a) and a = 1.5 in (b). .... 52 

Figure 56. (a) Vase with dielectric material and constant color filter, (b) vase 

with glossy transmitter material and a noise-based filter color. ........................... 53 

Figure 57. The final image of the vase. .................................................................... 54 

Figure 58  (a) Saturn’s ring image from NASA. (b) Zoomed image of Saturn’s 

ring. ................................................................................................................................ 59 

Figure 59: Mandelbrot set zoomed x1 – x2000 ....................................................... 59 

  



xvi 

 

Ray Tracing Dielectrics with Spatially Varying Properties 

By 

Ahmad Ali Elhoni 

Supervisor 

Dr. Mohammed M. Elammari 

Co-Supervisor 

Dr. Kevin G. Suffern  

 

Abstract 

 

Transparent objects are simulated in ray tracing by using reflected and 

transmitted light rays. We present a simple technique for ray tracing dielectric materials 

where the filter color inside objects varies with position. The surface reflection and 

transmission can be specular or glossy. This is based on Whitted-style ray tracing and 

path tracing. We also ray trace materials where the index of refraction varies with 

position. This results in curved light paths which in some cases have to be computed 

numerically. We ray trace Luneberg lenses, and spheres where the index of refraction is 

proportional to 1 / r , and r is the radial distance from the center. We call these inverse 

spheres. We mathematically analyze the light ray paths inside these spheres, which are 

logarithmic spirals, and ray trace them from the inside with a fisheye camera. This 

camera allows rays to be shot in all directions from the location of the camera. We 

found that the resulting images contained one or more fractals, and our analysis allowed 

us to understand how the fractals formed. We rendered a number of images to confirm 

the existence of the fractals.  

As a case study, we model a vase in Maya with a high-resolution triangle mesh, 

and render it in our ray tracer with a variety of materials and ray tracing techniques. 

These include dielectric and glossy transmitter materials, a rainbow-colored filter color, 

and path tracing to produce colored caustics. 

There is more work to do with the inverse spheres. We want to ray trace them 

when the index of refraction at the surface is greater than one, and has arbitrarily large 

values. We also want to place a reflective sphere inside an inverse sphere, and find out 

what it looks like when we ray trace it with the camera inside and outside. 
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1 Introduction 

1.1 A Historical Overview 

Ray tracing is an elegant technique that has its origins in lens making; Carl 

Friedrich Gauβ traced rays through lenses by hand in the 19
th

 century. Ray tracing 

algorithms on computers follow the path of infinitesimal rays of light through the scene 

until they intersect a surface. This approach gives a simple method for finding the first 

visible object as seen from any particular position and direction. See (Pharr, Humphries, 

& Jakob, 2017). 

Another definition: Ray tracing is a computer graphics rendering technique that 

simulates geometric optics, where light travels along infinitely thin rays. See (Hecht, 

2001). It does this by shooting rays into a scene from a camera, and computing a color 

for each ray. Ray tracing’s great flexibility comes from the fact that it can recursively 

follow reflected and transmitted rays. This allows it to render reflective and transparent 

objects, as first discussed in the classic paper Whitted (1980). 

 

1.2 Problem Statements 

In the early years of research fields, Ray tracing focused on solving fundamental 

problems such as determining which objects are visible from a given view point. And 

then as the scene became more complex and had more detailed materials such as 

Dielectrics shapes and so on the more effective techniques were needed. See (Pharr, 

Humphries, & Jakob, 2017).      

In CG industry Dielectrics are transparent materials such as glass and acrylic. 

Air is also a dielectric. When a ray hits the surface of a dielectric object from the inside 

or the outside, it can be split into two rays where one is reflected, and the other is 

transmitted through the surface. This creates a binary tree of rays. The transmitted ray is 

bent away from the original ray’s direction, which is called refraction. This is because 

light travels at a slower speed in a dielectric than it does in air. The index of refraction 

(ior) of the dielectric determines the speed (Suffern K. , 2007).  

 

1.3 Motivation 

Dielectrics can be clear or colored, where the color can be the same at all 

positions, or it can vary with position, in which case it is called spatially varying. As 

light passes through a colored dielectric material, some wavelengths are absorbed more 
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than others, which results in the colored appearance. This process is called color 

filtering. When the color is spatially varying, it is necessary to sample the color at 

multiple points along the rays, in order to compute the total amount of filtering for each 

wavelength. 

The index of refraction for most dielectrics is constant, but for some dielectrics, 

it can also be spatially varying. In this case the rays travel along curved paths, which in 

some cases have to be computed using numerical techniques. 

The surfaces of dielectrics can be perfectly smooth like glass, which results in 

specular reflection and transmission, where the reflected rays are in the direction of 

perfect mirror reflection. The surfaces can also be rough, like sand blasted glass where 

the reflected and transmitted rays are in random directions. This called glossy reflection 

and transmission.  

Imagining the variety of rendering the above physical phenomena in a single 

master piece image is one of the reasons of a fascinating study area. 

 

1.4 Research Aim and Objectives     

This thesis aims to ray trace dielectrics where the spatially varying filter colors 

are based on noise-based textures (Perlin, 1985). The dielectrics will have specular or 

glossy reflection and transmission. Also, ray trace a number of spheres where the index 

of refraction (ior) varies with position. These will be the generalized Luneberg lenses 

introduced by Suffern and Getto (1991), spheres where the ior is a Gaussian function, 

and spheres where the ior is the inverse of the radial distance from the center. Then to 

explore the optical properties of the inverse spheres by ray tracing them with the camera 

inside, and by plotting interior and exterior ray paths. By doing this, we will use ray 

tracing to see things that we cannot see any other way. This is a major purpose of the 

study. 

The main objectives of this thesis are the following issues: 

 Adding variable filter color support to standard ray tracer. 

 Adding variable index of refraction to standard ray tracer. 

 Adding texture-based index of refraction to standard ray tracer. 

 Adding variable index of refraction to a physically-based ray tracer. 

 Comparing existing techniques and related works to our approach, e.g. 

glossy transmitter and Runge-Kutta methods.  
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 Study and understand how fractals are formed. 

 See how possible in the future to reduce artifacts and speed up process. 

 

1.5 Research Methodology 

We have rendered a vase model with a spatially varying filter color, and glossy 

reflection and transmission using two different techniques, area lighting which is a 

primitive Ray tracing algorithm. And path tracing to produce soft shadows and colored 

caustics. 

For variable spatially, properties we have used Runge-Kutta numerical technique 

as in Luneberg lens, and we used analytical solution for the inverse spheres.  

Last but not least, solving analytical inverse r spheres equations step by step. 

Also applying inside camera position for those spheres is worth a try. 

 

1.6 Limitations 
 

The major part of this work was rendering materials with spatially varying filter 

colors and indices of refraction. This was computationally intensive for a number of 

reasons, mainly stemming from the 3D lattice noise-based textures we used for the 

variable filter colors. When the highest spatial frequencies of these were much smaller 

than the size of the objects, we needed to evaluate the textures many times along each 

internal ray to adequately sample them. Fortunately, for constant ior we were able use 

tri-linear-interpolation of the lattice noise points, although for rendering glossy 

materials, and for path tracing, we needed to use many rays per pixel to reduce the 

image variance to acceptable amounts. Because of these problems, the final image in 

Figure 57 has a lot of noise. 

We also wanted to use noise-based textures to specify how the ior varies with 

position. But this situation would be far worse, because the differential equations we 

would have to solve in Equations (15) require the partial derivatives of the noise 

functions to be evaluated many times along the internal rays. This means we would 

have to use tri-cubic interpolation where the computation of each noise point requires 

the evaluation of 21 cubic Catmull-Rom splines, for each octave. See Suffern (2007) 

Chapter 30. This would be impractical for a CPU based ray tracer on our single desktop 

machine, particularly for glossy materials or path tracing. As an indication, Ament et al. 
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(2014) used a 16 node computing cluster with 2 Intel Xeon X5620 quad core CPUs 

running at 2.4 GHz, and still had typical rendering times of hours for their images. 

GPU acceleration would therefore be something to look at in the future, where 

the GPUs are used for the shading as well as the ray-object intersections. 

 

1.7 Thesis Organization 

The rest of this document is structured as the following: Chapter 2 gives the 

background information that is needed using Ray tracing dielectrics materials with 

spatially varying properties. Chapter 3 presents existing and related works. Chapter 4 

describes our approach. Chapter 5 presents the implementation and the results of our 

approach for a simple Ray Tracer software. Chapter 6 shows the extended work done 

with more complex and realistic Ray Tracer software. Chapter 7 includes the main 

discussion and gives some perspectives. Finally chapter 8 concludes what is done.  
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2 Background Material 

We discuss here the physics, mathematics, and computer graphics background 

material that we need for the ray tracing. 

 

2.1 Index of Refraction 
 

Light only travels at a constant speed c  , where c = 2.99 × 107 m per second, in a 

perfect vacuum . When light travels through a dielectric (often called a medium),  such 

as the atmosphere of the earth or glass, it slows down because the light interacts with 

the medium’s molecules. We define the absolute index of refraction η of the medium to 

be the ratio of the speed light in a vacuum c to its speed v in the medium: 

η = c / v . 

 

Table 1 shows the index of refraction for some common media. 

 

Medium Index of Refraction 

Perfect vacuum 1.0 

Air (1 atm, 20o 
 C) 1.0003 

Ice 1.31 

Water 1.33 

Ethyl alcohol 1.36 

Fused quartz 1.46 

Acrylic (Plexiglas, Perspex) 1.49 

Crown glass 1.52 

Polyester resin 1.56 

Dense flint glass 1.66 

Diamond 2.42 
 

Table 1 Index of refraction for some common media. 
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2.2 Surface Physics 

2.2.1 Specular Reflection and Transmission 

When a ray from direction ω o hits a specular boundary between two transparent 

media, the reflected ray r makes the same angle θ i with the normal n as the incoming 

ray. See Figure 1. This is the law of reflection. Here, we use the standard ray tracing 

convention that all ray directions point away from the hit point p . In this case the 

incoming ray direction is – ω o. 

 

 

 
Figure 1. Reflected and transmitted ray directions at the boundary between two transparent media, 

Suffern (2007), p. 564.  

 

The relevant quantity for ray tracing is the ratio η of the two indices of refraction η  = η 

in / η out . In Figure 1, θ t is the angle of refraction . This is the angle between the normal 

direction on the transmitted ray’s side of the boundary, and the transmitted ray t  . The 

relationship between θ i and θ t is known as Snell’s law: 

 

 


 
 

i in

t out
.

sin

sin Equation 1 

Using the law of reflection and Snell’s law, we can derive the following expression for 

the transmitted direction t : 

 
 

   t i
1 1

,cos cos( )t no Equation 2 
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where 

      cos θ 

i = n  ω 

o 

and 

 


 
1/ 22 .t i

2
cos ( sin )

1
1 Equation 3 

See Glassner (1989) and Shirley and Marschner (2009). By construction, t is a unit 

vector.  

When light passes from a medium with a smaller η to a medium with a larger η , 

t is bent towards the normal direction at the hit point (see Figure 4.2(a)). But when light 

passes from a medium with a larger η to a medium with a smaller η , t is bent away from 

the normal direction as shown in Figure 2(b). 

    

(a)                                                                (b) 

Figure 2 (a) Direction change of transmitted ray t when η > 1, (b) Direction change of t when  η < 1. 

 

This can lead to the optical phenomenon called total internal reflection , as illustrated in 

Figure 3. As the incident angle θ i increases, it can reach a critical angle θ c where the 

transmitted ray is parallel the surface. This is the situation in Figure 3(a) where t is a 

dashed line because it contains no energy. If θ i > θ c , there is no transmitted ray, and the 

boundary becomes a perfect specular reflector. 
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Figure 3. Total internal reflection: (a) θ i = θ c ; (b) θ i > θ c. 

In Figure 2(a), the energy in the incident ray is split between r and t  , but as the direction 

of t approaches the boundary, the energy it carries decreases, while the energy carried 

in the reflected ray r increases. By the time t is parallel to the boundary, there is 

no energy in it. When total internal reflection occurs, all of the energy from the incident 

ray goes into the reflected ray. The Fresnel equations, which are discussed below, 

specify the exact energy split between t and r as a function of θ i and η.  

To produce correct images, total internal reflection must be taken into account 

when we ray trace transparent objects. We have to test for this condition at each ray–

transparent-object hit point. Fortunately we don’t have to compute θ c ; total internal 

reflection occurs when the expression inside the square root in Equation (3) is less than 

zero. In this case the expression for t would contain a complex number, which means 

that t doesn’t exist as a real ray. The test is therefore 




 2 i
2

1
sin 01 Equation 4 

 

2.2.2 Fresnel Equations 

A simple model of transparent materials in ray tracing uses constant reflection 

and transmission coefficients k r and k t, where k r + k t = 1.0. The French physicist and 

mathematician Augustin-Jean Fresnel (1788-1827) discovered how these quantities vary 

with the incidence angle θ i. These involve polarized light (Hecht, 2001): 

 

         Equation 5 
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𝑟 =
cos 𝜃 − 𝜂 cos 𝜃 
cos 𝜃 + 𝜂 cos 𝜃 

 

 

where η = η in / η out  and 𝑟  and 𝑟  are the reflected amplitudes of light waves polarized 

parallel and perpendicular to the boundary respectively. For           un-polarized light, 

the Fresnel reflectance k r is given by 


 rk r r

2 2( ).
1

2 P
        Equation 6 

By conversion of energy, the Fresnel transmittance k t is 

 

    k t = 1 – k r .                        Equation 7  

 

Figure 4 shows plots of k r and k t for glass with η = 1.4. Here, k r is 4% at normal 

incidence, and rises to 100% grazing incidence. In fact, all smooth dielectrics and 

metals become perfect mirrors at grazing incidence. 

 

 
Figure 4. Fresnel reflectance and transmittance for glass as a function of incidence angle, Suffern (2007), 

p. 596.  

2.2.3 Glossy Reflection and Transmission 

 

The reflection and transmission of real materials can vary from diffuse to specular as 

illustrated in Figure 5. A diffuse reflector is like matte paint, where the light is scattered 

in all directions. 
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Figure 5. Reflectance and transmission: diffuse on the left, glossy in the middle, and specular on the right.  

 

We model glossy reflection by using random directions for the reflected rays measured 

from the direction of mirror reflection r . See Figure 6. 

 

 

Figure 6. The reflected ray direction ω i makes an angle θ r with the direction of mirror reflection r , 

Suffern (2007), p. 530.  

 

The density d in solid angle of these rays is given by 

 

               d = (cos θr)e                                          Equation 8 

 

where e is the specular exponent. When e = 1.0 we have diffuse reflection. Note that this 

is modeled with a cosine distribution instead of a constant density. As e increases, the 

surfaces become less glossy, and in the limit e –> ∞, they become specular. These 

distributions of ray directions are known as Phong lobes. A feature of this simple 

empirical model is that a fraction of the Phong lobe is always below the surface, and for 

n

r

surface

p

q r

o

i
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incoming rays at grazing incidence, the fraction is one half. Any rays with directions 

below the surface have to be killed, which results in limb darkening, as shown in Figure 

7. The limb darkening is however, physically correct.   

 

                  
 

Figure 7. Diffuse sphere (e = 1.0) rendered with 100 rays per pixel. 

We model diffuse and glossy transmission in an analogous way, but here we don’t kill 

the rays below the surface, because they are refracted, and then internally transmitted 

(the ray t in Figure 1). This allows us to render dielectric materials that look like frosted 

glass, as shown in Figure 8. More sophisticated and physically accurate models of 

glossy reflection and transmission have been developed based on micro facets , starting 

with Blinn (1977). 

 

Figure 8. Glossy transmission material rendered with e = 10000.0. 

 

2.3 Color Filtering 
 

When light passes through dielectrics some of it can be absorbed by the 

molecules. The dielectric will be colored if the amount of absorption depends on the 
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wavelength of the light. According to the Beer-Lambert law , the transmitted radiance 

L(d) can be written as: 

 

 dL d L of( ) ,c Equation 9 

 

where d is the distance traveled in the dielectric material,  L o is the value of L when d = 

0, and c f  is the filter color, Suffern (2007), p. 596. 

We use a simple RGB color for all colors in the ray tracer, where white is (1.0, 

1.0, 1.0).  If c f is white, there is no color filtering (and the dielectric is clear), but if any 

color component is less than 1.0, it’s value decreases exponentially with the distance 

travelled through the dielectric. This is illustrated in Figure 9. 

 

Figure 9. Plots of c d for various values of c , Suffern (2007) p. 598. 

 

A good way to demonstrate beer’s Law is to ray trace a concave lens as shown in Figure 

10. Here, the thickness of the lens at the rim is 4.0, but at the center it’s only 0.1. 
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Figure 10. A concave lens rendered with cf = (0.65, 0.45, 0.0), Suffern (2007), p. 608. 

 

2.4 Noise-Based Textures 

2.4.1 Lattice Noise 

 

A characteristic of natural textures is their randomness. They may contain 

structures or colors that repeat, but the exact details are always different. Stones, woods, 

and clouds are examples. We can simulate many of these textures with functions built 

from pseudo-random numbers. These are known as noise functions. The original 

functions were invented by Ken Perlin in 1985, and have been used extensively for 

image synthesis ever since. To produce good 3D noise-based textures, we need to do a 

number of things. The first is to produce a smoothly varying 3D random function that 

has a known range, and does not repeat. Perlin (1985) used a simulated infinite 3D 

lattice of random numbers in the range (-1.0, +1.0) at the corners of unit cubes. See 

Figure 11. 

 

Figure 11. 3D infinite lattice, Suffern (2007), p. 694. 
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These values are interpolated using tri-cubic interpolation to give the value of the noise 

function at any point in space. The result is known as a lattice noise . This is just a quick 

overview of a process that involves the cell where the point is, its 26 neighbors: face, 

edge, and vertex; and 21 cubic Catmull-Rom splines. The best places to read about 

these are Peachy (2003) and Suffern (2007), Section 31.2.2. 

Figure 12(a) shows a 2D image of the lattice noise, and Figure 12(b) shows a 1D 

plot of the noise along the center row of pixels in part (a). Part (a) shows that this noise 

function is not suitable for texturing, because the cellular structure of the cubes is 

evident. 

         

                     (a)               (b) 

Figure 12. (a) 2D slice of tri-cubic interpolated lattice noise; (b) plot of the lattice noise along the middle 

row of pixels in (a). 

4.4.2 Spectral Synthesis 

 

It’s far more useful to use spectral synthesis , which involves a weighted sum of the noise 

function and its octaves. If p is a point where we want to evaluate the noise, the fractal 

sum function is defined as 

 





 
n

nois
fractal_su

e
m

1
j

j

j 0

(2 )
( ) ,

2
* p

p

Equation 10 

where each term has a smaller amplitude by a factor of two, but changes twice as fast 

with distance. Figure 13, which is based on Apodaca and Gritz (2000), p. 252, illustrates 

this process. 
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Figure 13. Terms in the fractal_sum function, and their sums. 

Figure 14(a) shows a single octave, which is just cubic noise; part (b) shows two 

octaves where there is still some evidence of the cubic lattice; part (c) shows 8 octaves, 

where there is still some evidence, but it’s not objectionable. 

   

        (a)                                       (b)                               (c)  

Figure 14. 2D cross sections of the fractal_sum function with 1 octave in (a), 2 octaves in (b), and 8 

octaves in (c). 

 

2.4.3 Wrapped Noise Textures 

 

Wrapped textures are created by increasing the range of a lattice noise, and using 

the Standard C Library function floor to create discontinuities in the returned value. 

Because this is hard to explain in words, it’s best just to read the pseudo-code below. 

This results in ridges in the texture, as illustrated in Figure 15. The details are in Suffern 

(2007), p. 720. In chapter 5 we will ray trace a transparent object where the filter color 

is a wrapped texture, because this has not been done before. 

 

RGBColor wrappedtexture::get_color(hit_point) { 

 noise = multiplier * noise_function(hit_point) 

 value = noise – floor(noise) 

 return (value * color) 
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} 

 

 

Figure 15. Example of a wrapped texture. 

4.5 Monte Carlo Integration 

When we ray trace scenes with area lights, or materials with glossy reflection or 

transmission, we need to numerically estimate the values of multi-dimensional integrals. 

This is a result of solving the rendering equation. The most efficient way to do this is to 

use random numbers. The technique is called Monte Carlo integration, and was first 

discussed by Lord Kelvin in 1901 and then independently rediscovered by Enrico 

Fermi, John von Neumann, and Stanislaw Ulam in the 1940’s. The book Handscomb 

and Hammersley (1964) is a good introduction to the subject. 

Below is a brief introduction using a one-dimensional example. Figure 16 shows 

part of a function f  (x) for x [a , b], where the definite integral
                                                

is the shaded area under the graph. 

 

 

Figure 16. (a) equally spaced sample points; (b) uniformly distributed random sample points; (c) 

randomly distributed sample points for importance sampling. 

(a)            (b)                                           (c)
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This figure shows three techniques for numerically estimating its value with sample 

points. In part (a), the samples are equally spaced in the x direction. Joining the blue 

sample points with straight lines creates a series of trapezoids whose area can be 

summed to estimate the integral. The more sample points we use, the more accurate the 

result. This is the trapezoidal technique from traditional numerical quadrature. The 

problem with this and related techniques is that the results get worse as the 

dimensionality of the integrals increases. In contrast, Monte Carlo techniques get more 

accurate as the dimensionality increases. 

In Figure 16(b),  the samples use uniformly distributed random values of x in the 

interval [a , b]. The Monte Carlo estimator for the integral I , denoted by  I  , is 




  

n
b a

I f x
n

j

j 1

( ).
Equation 11 

Here, we have used the mean value theorem , as discussed in most calculus texts. 

For a given number of samples n , we can get a more accurate estimate by 

making the density of the points match the shape of the function as closely as we can. 

This is known as importance sampling , and is illustrated in Figure 16(c). The estimator 

in this case can be written using a probability distribution function or pdf for short: 



  
n

f x
I

n p x

j

j
j 1

( )1
.

( ) Equation 12 

The closer the pdf matches the function, the better the results will be. The problem with 

ray tracing is that, although the points are 3D, the integrals can have arbitrarily high 

dimensions, and we don’t know what the functions are. But usually we know something 

about them. For example, if there is diffuse reflection (from matte surfaces), the 

function will involve cos (θ i), and we can use that. 

Regardless of the sampling technique we use, the resulting images will generally 

be correct provided we use enough sampling points. Importance sampling is just more 

efficient than uniformly distributed random sampling. Errors show up as noise in the 

images. In contrast, if we used equally spaced points, the errors would be artifacts in the 

images, which are much more objectionable than noise. 
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3 Literature Review 

Most of the papers discussed here presented the original ray tracing and related 

research material that our work is based on. These papers are sorted in a relevant to the 

evolution of ray tracing. 

 

3.1 Whitted (1980) An Improved Illumination Model for Shaded 

Display 

Before Whitted’s landmark paper (Whitted, 1980), ray tracing was only used for 

ray casting, where the rays stopped when they hit an object. This allowed the direct 

illumination from light sources to be rendered, which existing scan-line algorithms 

could also render. Whitted presented an algorithm that allowed part of the global 

illumination in a scene to be rendered. For transparent materials, a binary tree of rays is 

recursively constructed and traced for each pixel. This starts from the viewer to the first 

surface intersected, and from there to other surfaces. This allowed the ray tracer to 

accurately render reflections, shadows, and transparency with refraction. These effects 

could not be rendered by scan-line algorithms. 

 

3.2 Kajiya (1986) The Rendering Equation 

The rendering equation, as introduced by Kajiya (1986) was Chandrasekhar’s 

equation of radiative transfer, originally published in Chandrasekhar (1960), but re-

written in terms of intensity. This is a Fredholm integral equation of the second kind 

which has an infinite series expansion solution. Kajiya showed that the first term 

represents ray casting, multiple terms represent path tracing and radiosity, and a double 

series solution with multiple terms represents Whitted ray tracing. This is another 

landmark paper because it provided a unified theoretical foundation for all these 

rendering algorithms. Now, we express the rendering equation in terms of radiance, 

because this is the fundamental radiometric quantity transmitted by rays. 
 

3.3 Perlin  (1985) An Image Synthesizer and Peachy (1985) Solid 

Texturing of Complex Surfaces 

Perlin (1985) and Peachey (1985) simultaneously introduced 3D procedural 

textures to computer graphics, and the use of Fourier synthesis for texture generation. 

Peachey used sums of sinusoids, but Perlin used sums of 3D lattice noise functions. He 

also introduced a turbulence function which is a sum of the absolute values of the noise 
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functions. Both authors used their techniques to render a variety of 3D textures. We 

used Perlin’s noise function to define spatially varying filter colors for transparent 

objects. 

 

3.4 Evans and Rosenquist (1985) F = ma Optics 

These authors showed that Fermat’s Principle, see for example Hecht (2001), 

can be used to derive equations of the form F = ma (Newton’s second law of motion) 

for determining the shapes of light paths in media with spatially varying indices of 

refraction. A big advantage of this technique over the traditional method of using the 

non-linear eikonal equation is that the resulting equations are linear. This makes them 

much simpler to solve analytically, or if that’s not possible, they can be solved with 

standard numerical techniques such as Runge-Kutta integration (see Section 4.6). 

 

3.5 Suffern and Getto (1991) Ray Tracing Gradient Index Lenses 

In spite of the advantages of F = ma optics, this paper seems to be the only 

publication to have used it for ray tracing. These authors ray traced images of two 

families of objects with spatially varying indices of refraction: generalized Luneburg 

lenses, which are spheres, and gradient index rod lenses, which are circular cylinders. 

The equations of motion of light rays inside the lenses were solved analytically or 

numerically. 

 

3.6 Lee and Uselton (1991) A Body Color Model: Light Absorption 

Through Translucent Media 
 

These authors discussed the absorption of light by transparent media where the 

amount of absorption depends on the wavelength of the light. They derived the equation 

for the Beer-Lambert law of absorption for homogeneous media, which we discussed in 

Section 2.3. They also discussed absorption in inhomogeneous media. 

 

3.7 Ament, Bergman, and Weiskopt (2014) Refractive Radiative 

Transfer Equation 

This recent paper introduced a refractive radiative transfer equation for media 

with a spatially varying index of refraction. Their work was based on Hamiltonian 

dynamics to describe light propagation along curved paths. They implemented their 

work as an extension to the photon mapping algorithm introduced by Jensen (2001). 
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4 Techniques 

4.1 Overview 

In this chapter we discuss practical techniques for rendering dielectrics with 

spatially varying indices of refraction, and textured color filtering.     Figure 17 

illustrates the various types of dielectrics and the people who originally studied, or ray 

traced them. 

 

Figure 17. Types of dielectric materials. 

 

4.2 Whitted Ray Tracing 
 

In Whitted ray tracing, reflected and transmitted rays are followed 

recursively until a specified maximum recursion depth is reached, or some 

other condition terminates them. This is illustrated in Figure 18, where the 

scene consists of two transparent objects, an opaque non-reflective object, one 

other object, and is ray traced with a maximum depth of four. Here, r o is the 

primary ray, which starts at the camera, and is at depth zero. 
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Figure 18. Transparent objects with reflected and transmitted rays, Suffern (2007), p. 569. 

 

This results in a binary tree of rays, as shown in Figure 19, which can result in long 

rendering times. In practice, branches are often terminated before they reach the 

maximum depth. In Figures 18 and 19 this has happened when one ray has hit a non-

reflective object, and another has encountered total internal reflection.  

 

 

Figure 19. The ray tree that corresponds to Figure 18 , Suffern (2007), p. 569. 

 

As an example, Figure 20(a) shows a collection of glass blocks ray traced with a 

maximum depth of 4, which is too low for all the rays to get though, as shown by the 

black areas. In Figure 20(b) the maximum depth is 15, which seems to be sufficient, but 

this took a long time to render. 
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        (a)                               (b) 

Figure 20. Glass blocks with η = 1.5, color filtering, and the Fresnel Equations for reflection and 

transmission: (a) max depth = 4, (b) max depth = 15 , Suffern (2007), pp. 635 and 616. 

 

4.3 Path Tracing 
 

Whitted ray tracing can only simulate certain parts of the light transport in 

scenes. For example, light can be reflected from a mirror onto a wall, or concentrated by 

a magnifying glass onto a piece of paper. Although Whitted ray tracing can follow the 

rays that are reflected and transmitted through dielectrics, it cannot render the light that 

is reflected from the surfaces that these rays hit. These are called caustics.  It also cannot 

simulate diffuse to diffuse light transport. These are all parts of indirect illumination, 

which is also called global illumination. 

Fortunately, direct and indirect illumination can be rendered with path tracing , in 

scenes with area lights. Unlike point lights, which cannot exist, area lights have finite 

surface area. Path tracing is a conceptually simple brute-force technique which works as 

illustrated in Figure 21. Each ray is recursively traced through the scene until it either: 

reaches a light source, or the maximum recursion depth is reached, or it leaves the 

scene. The smaller the light sources are, the more rays are needed to reduce the noise to 

an acceptable level. 
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Figure 21. Gray scale image of the Cornell box scene originally path traced in color by Steve Parker with 

100498 rays per pixel. (a) ray hits the light, which is the only source of radiance, (b) ray terminates at the maximum 

recursion depth of five, (c) ray leaves the scene. Suffern (2007), p. 544. 

 

We use path tracing to render a vase with a colored glossy transmitter material because 

the colored caustics add extra realism to the images. Photon mapping, developed by 

Jensen (2001) is more efficient than path tracing for rendering caustics, and works with 

point lights as well as area lights. 

 

4.4 Spatially Varying Filter Color 
 

The formula for color filtering in Equation (9) only applies when the filter color 

is constant. When the color varies with position, we have to sample it along the ray as 

illustrated in Figure 22. 

 

Figure 22. When we sample a spatially varying texture along a ray and use Equation (9) for the filter 

color, we approximate the texture as slabs of constant filter color. This figure is schematic only; the 3D filter color in 

the surrounding dielectric can vary in any way. 

The formula for the filtered color is in Equation (13) where d is the distance along the 

ray between the sample points. 
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4.5 Spatially Varying Index of Refraction 
 

When the index of refraction of a dielectric varies with position, the rays follow 

curved paths, as illustrated in Figure 23. In simple cases such as Luneberg lenses and 

mirage formation above hot road surfaces, the paths can be computed analytically 

(Evans and Rosenquist, 1985). In other cases, the ray paths have to be computed 

numerically, for which we will use the standard Runge-Kutta technique, as described 

below. 

 

 

Figure 23. A curved ray path through a dielectric with a spatially varying index of refraction. 

 

To compute the color filtering, we approximate the ior along the ray as slabs with 

constant η between the sample points. See Figure 24. In this case the sample points are 

not equally spaced in distance along the ray, because of the numerical 

integration. 

 

 

 

 

 

Figure 24.  Here, the heights of the slabs represent the constant values of the ior between the sample 

points on the ray. This is another schematic diagram. 
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We use the formula in Equation (14) for the color filtering, where d j is the distance 

between the points j – 1 and j. The η 
2 factors are due to the refraction of light as the ior 

changes at each sample point. See for example Suffern (2007), p. 568. 
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jj 1

c c
Equation 14 

4.6 Runge-Kutta Integration   
 

Runge-Kutta integration is a common numerical technique for obtaining 

approximate solutions to systems of first-order differential equations, given a set of 

initial conditions. For the single equation dy /dx = f (x , y) with initial condition y (x  o) =  y 

o , the fourth-order Runge-Kutta equations are: 

𝑦   = 𝑦 +
 

 
(𝑘 + 2𝑘 + 2𝑘 + 𝑘 ), 

𝑘 = 𝑓(𝑥 , 𝑦 ), 

𝑘 = 𝑓 (𝑥 +
 

 
ℎ, 𝑦 +

 

 
ℎ𝑘 ), 

𝑘 = 𝑓(𝑥 +
 

 
ℎ, 𝑦 +

 

 
ℎ𝑘 ), 

𝑘 = 𝑓(𝑥 + ℎ, 𝑦 + ℎ𝑘 ), 

 

where h is the (constant) step size in x. See for example Ralston and Rabinowitz (2001) 

and Zill, Wright, and Cullen (2012), p. 368. Although h can vary from step to step, we 

will use a constant value. 

The equations to be solved for points (x, y, z) along the curved ray paths can be 

written as the following three second order differential equations where a is an affine 

parameter, and η (x, y, z) is the ior. See Suffern and Getto (1991). 

                                            

                                                       

                                             

Equation 15 
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These can be written as 6 first order differential equations which we will solve with a 

fourth order Runge-Kutta technique.  

 

   



27 

 

5 Simple Ray Tracer 
 

For the results presented here, we used the ray tracer discussed in Suffern (2007) 

and then further developed by Rosser (2012). This later version runs in Visual Studio, 

has a good user interface, allows arbitrarily sized images to be rendered, is multi-

threaded, uses smart pointers and reference counting so there are no memory leaks, and 

allows images to be saved in a number of file formats. We have included the Data Flow 

diagram in the Appendix. Chapter 6 shows a more realistic render aka LuxRender to 

produce more authentic some images, see for latest version www.luxcorerender.org  

 

5.1 Textured filter color 

Figure 25(a) shows a sphere rendered with a fractal sum filter color as defined in 

Equation (10), where the rainbow-like colors come from evaluating Equation (5.1). In 

Figure 25(b), the filter color is a wrapped noise texture, which shows the characteristic 

ridges of this type of noise function. See Figure 15. 

 

     

    (a)             (b) 

Figure 25. (a) Dielectric sphere with a fractal sum rainbow colored filter, (b) a wrapped noise texture. 

Figure 26 shows a number of objects rendered using the techniques discussed above. 

The orange sphere has a wrapped texture; the rectangular box is a dielectric with a blue-

green filter; the pink cylinder has a glossy reflective material; the large sphere has a 

rainbow texture color filter; the small sphere has a glossy dielectric material with olive-

green color filtering. The spheres show some perspective distortion. This image was 

rendered using path tracing with max depth = 10 and approximate 64 samples per pixel. 

http://www.luxcorerender.org/
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A large hollow sphere with an emissive material on its inside surface acts as the light 

source. This results in the soft shadows on the plane. It also results in the colored 

caustics on the plane (which are difficult to see.) 

 

 

Figure 26. Path traced objects, with different shaders. 

 

5.2 Spatially Varying Dielectrics 
 

5.2.1 Surface Variation 

 

Figure 27(a) is a reference image of a dielectric sphere with η = 1.5, and a 

reflective sphere.  In Figure 27(b) the ior at the surface of the dielectric sphere is 

defined by a noise-based texture that changes the directions of the internal and external 

transmitted rays. The result is an interesting image that looks as if it could have been 

done with bump mapping. The black areas near the edge of the sphere are caused by 

total internal reflection. There is much to explore with this technique. 
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(a)                          (b) 

Figure 27. (a) A dielectric sphere and a reflective sphere ray traced with max_depth = 3, (b) the scene in 

part (a) rendered with a textured surface ior on the dielectric sphere. 

 

5.2.2 Volume Variation 

 

5.2.2.1 Generalized Luneberg Lenses 

 

These are spheres, and were ray traced by Suffern and Getto (1991). The ior is 

 

                                                
η (r) = (C – r  2 / R  2)1/2 ,                                              Equation 16 

 

where R is the radius, and the constant C satisfies C ≥ 2.0. The original Luneberg lenses 

have C = 2.0 so that η at the surface is 1.0. These have the property that any set of 

parallel rays that intersect the lens, exit it from a single point. See Luneberg (1964), and 

Figure 28, which is from Suffern and Getto (1991).    

 

Figure 28. Parallel rays that intersect a Luneberg lens all exit at  a single point. 

Although there’s a formula for the ray paths inside Luneberg lenses (Evans and 

Rosenquist, 1985), we have used numerical integration with the Runge-Kutta technique. 
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This is simpler, because it avoids a lot of mathematical analysis. Figure 29(a) shows a 

set of parallel rays hitting a sphere with C = 3.0.  This sphere is ray traced in Figure 

29(b). 

 

          

     (a)                    (b) 
 

Figure 29. (a) Internal and external rays for a Luneberg sphere with C = 3.0 and r o = 3.0, (b) ray traced 

scene with this sphere. 

 

Figure 30 shows the rays and the ray traced image for C = 10.0. Here, the sphere is 

much more reflective than the one in Figure 29(b), because of the Fresnel equations. 

When C = 3.0, η = √2 at the surface, and at normal incidence  k r = 0.029 according to 

Equations (5) and (6). As a result, the reflection of the checkered rectangle is barely 

visible. In contrast, when C = 10.0, η = 3.0 at the surface, and at normal incidence k r = 

0.25, which is almost an order of magnitude higher. In Figure 30(b), the reflection is 

much brighter, and the refracted image of the rectangle at the top is not as bright. 
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           (a)                        (b) 
 

Figure 30. (a) Internal and external rays for a Luneberg sphere with C = 10.0 and R = 3.0, (b) ray 

traced scene with this sphere. 

 

As C increases, the ray traced images become more like those with constant η. For 

example, the dielectric sphere in Figure 31(a) has η = 3.0 (which is not a physical 

material), and looks almost identical to the Luneberg sphere in Figure 31(b), which we 

have reproduced next to it make the comparison easier. The reason is that from 

Equation (16), as C increases, the difference between η at the center and the surface 

becomes smaller, and therefore more like a dielectric. In this example with C = 10.0, at 

the center η =  10.0 = 3.16, and at the surface η = 3.0. 

   

(a)                             (b) 
 

            Figure 31. (a) Dielectric sphere with η = 3.0, (b) reproduction of Figure 6.6(b). 
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5.2.2.2 Inverse r Spheres  

(a) Analysis 
 

 In these spheres η is given by the simple expression 

 

                  η = k / r,                               Equation 17                

 

where k is a constant, and r is the distance from the center. In contrast to the Luneberg 

spheres, where η is always finite, here η is infinite at the center. As such, these spheres 

are non-physical, but as we will see, the 1 / r behavior of η gives rise to a most 

interesting set of optical effects. These spheres were first studied by Evans and 

Rosenquist (1985) who found that the ray paths are Logarithmic spirals 

 

                             Equation 18                     

 

where c and d are constants. See Figure 32. As we’ll see, the analysis is long and 

complex, but unavoidable. This because in theory, the light paths can have can have 

infinite length, and therefore we cannot use numerical integration. If we could, it would 

not give us the insight into the images that the analysis does. 

 

 
   

Figure 32. A logarithmic (or exponential) spiral. 

 

When d = 0, these are circles of radius c. Evans and Rosenquist (1985) found that the 

time for light to traverse these circular orbits is independent of the radius. 

 Although the expression for the spirals in Equation (18) is simple, the following 

analysis for ray tracing purposes is surprisingly long and complex.  

 
r = ce dq

q

y

r

x



33 

 

To ray trace inverse r spheres we put the camera inside the spheres because this 

produces the most interesting images. Each camera (primary) ray is a spiral in its own 

plane that passes through the sphere center c = (c x, c y , c  z
), and is uniquely defined by 

the camera’s eye point e = (e x, e y, e z), and the initial unit ray direction d = (d  x , d  y , d  z). 

These are illustrated in Figure 33, where their (x  , y  , z) components are specified in the 

world coordinates (x  w , y w , z w) shown at the bottom left.  Although the spiral is drawn 

from the center of the sphere, the only part that is relevant here is between e , and the hit 

point p on the inside surface of the sphere. That is because in this case, d points away 

from the center. More generally, d can point in any direction, including towards the 

center, in which case the part of the spiral that goes to the center would be relevant. 

We’ll discuss this in more detail below. 

 

 
 

Figure 33. Spiral configuration in an inverse sphere. The white ellipsoid is the circular disk that contains 

the spiral. It’s defined by c , e , and d , and has radius R which is the sphere radius. The horizontal line is parallel to 

the (x w , z w) plane; the angle  s is used to define the spiral through its initial direction. 

 

To trace a primary ray, we have to compute where the spiral hits the sphere, and 

the angle of incidence at the hit point. We can then use standard dielectric surface 

physics to test for total internal reflection at the hit point, and if there is none, compute 

the directions of the internal reflected ray, and the external transmitted ray, and trace 

them. We trace the external ray in the normal manner, but the internal ray is another 

spiral that starts on the surface. 

To derive an expression for the spiral in Figure 33 we need to perform a number 

of steps. The first is to set up a 2D orthonormal frame with origin e , in the plane as 
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shown in Figure 34.  This consists of the two perpendicular unit vectors, b and b 
, 

which meet at e . 

 

 

Figure 34. Unit vectors used for calculating the spiral. The green squares indicate vectors that are 

perpendicular. 

 

We construct these as follows. First, 

 

                               b = (e – c) / || e – c  ||.    

         

 

Next, we construct the unit vector u , which is perpendicular to b,  b 
, and the plane: 

 

         u = (b  d) / || b  d  ||.    

         

 

Finally,  

    b 
 = u  b ,     

         

which is a unit vector by construction. The unit vectors to b , b 
, and u are a right 

handed system, but u is only used to construct b 
. 

In our formulation of the spirals we use the angle  s between b 
 and d , as 

shown in Figure 34. The subscript s indicates the start of the spiral at e . Figure 35 

shows a number of quantities that we need to compute for the spiral. This figure is a 

perpendicular view of the disk shown in Figure 33, which contains the spiral. 

c

u

b
d

b

ys

e
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Figure 35. Quantities that we need to compute the equation of the spiral, and the point p where it 

intersects the sphere surface.  



 

The equation of the spiral is                                                                                                                              

              Equation 19   

 

To compute   s , we use the dot product between the vectors e – c and t , as also 

illustrated in Figure 35. The expression for t is  

 

   t = i + k , 

 

where i = (1.0, 0.0, 0.0) and k = (0.0, 0.0, 1.0) are the unit basis vectors in the x w and  y 

w directions respectively. We then have 

 

    (e – c)  t = cos  s , 

so that   
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                                  s = cos–1 .                         Equation 20 

 

The spiral hits the inside of the sphere where r = R and   =   R, as also shown in Figure 

35. From Equation 19 we have 

 

          , 

so that 

                      Equation 21 

 

We now have to compute the 3D coordinates p of the hit point, which is more 

complicated than computing   R . To do this we use the lemon triangle in   Figure 36. 

 

 

Figure 36. The triangle we use to compute p . 

Here, we know the two sides R and S , and that the angle   is equal to   R –   s from 

Figure 35. Using these quantities, we can use the cosine rule for triangles to derive the 

following expression for the third side L :   

 

L = (R 2 + S 2 - 2RS cos )1/2, 
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which is the distance between e and p  . The quantity we don’t know is the angle   , but 

since we know the three sides L , R , and S and the angle   , we can use the cosine rule 

again with these, to get the following expression for cos  : 

 

cos  = (S 2 – R S cos  ) / (L S). 

 

Knowing L and  allows us to project L onto the b and b 
 directions as shown in Figure 

36. The expression for p is then 

 

                          p = e – L  cos  b  + L  sin  b 


 .                         Equation 22 

  

The minus sign in front of L cos  b is necessary because  is measured clockwise from 

S . In Figure 36, L is drawn to the right of the b 
 direction, so that   < 90o and cos  < 

0.0. The minus sign makes the b projection positive in this case. If L was drawn to the 

left of the b 
 direction, we would have  < 90o and cos  > 0.0 to give a negative b 

projection, as required. Of course, the expression (22) has to be correct for all camera 

locations e inside the sphere, and all 3D primary ray directions from e , which it is. 

The last thing we need to compute is the tangent vector ω o to the spiral at the hit 

point p , as illustrated in Figure 37. As these points back along the spiral, according to 

ray tracing convention, it is inside the sphere. 

 

 

Figure 37. The quantities we need to compute the tangent vector ω o to the spiral at p .  
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To compute ω o , we use the fact that a logarithmic spiral makes the same angle to any 

circle that is centered on the origin, which is c in our case. Figure 37 shows parts of two 

such circles. The first goes through e , where the angle is the specified value of  s . The 

second is the surface of the sphere, where the angle of the yellow triangle at p is also  

s . We now need to project ω o onto the b and b 
 directions by computing the angle  . 

Fortunately, this is simple to do because 

 

  = cos–1*(p – c)  b / R+, 

and   

 

 =  / 2 +   –  s. 

 

Projecting ω o onto the b and b 
 then gives 

 

ω o = – cos  b – sin  b 
, 

which can be simplified to 

 

ω o = sin (  –  s) b – cos (  –  s) b 
, 

where by construction, ω o is a unit vector.  

To understand what happens to the spirals, we need to look at Figures 38 and 39. 

Figure 38 has a lot of detail, because it shows eight spirals in the same plane that leave e 

in different directions. The first thing to note is that there are two dashed lines that go 

through e and are parallel to b and b 
. These divide the disk inside the sphere into four 

quadrants labeled I, II, III, and IV.  
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Figure 38. Eight spirals in the same plane that start at e , and go in different directions. Two of the spirals 

are circles, and two are straight lines. This figure also shows how the two perpendicular (dashed) straight lines 

through e , and parallel to b and b 
, divide the disk inside the sphere into four quadrants I, II, III, and IV. 

 

The quadrant that a spiral starts in, determines where it goes, but we’ll mention a 

special case first. When  s =  / 2, the spiral is parallel to b , and is therefore a radial 

straight line as indicated by the purple arrows. This hits the sphere surface with   R =   

s .  

The four cyan arrows (1) – (4) are unit tangent vectors at the start of spirals. The 

spiral associated with the arrow (1), travels outwards in a counter-clockwise direction, 

until it hits the sphere surface. This is the red curve the hits the surface at p . All the 

spirals with   s   (0.0,  / 2) have this behavior. But from equation (21),    R  +∞ 

when  s  0.0, because the variable term involves 1.0 / tan ( s) = cot ( s). This is 
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illustrated in Figure 39, which is a plot of   s + cot ( s) for  s   (0.0, 2). Here, we 

have replaced the  term in Equation (21) with 1.0, because R , e , and c  

are arbitrary, and this is just a vertical scaling factor. This plot therefore just shows the 

general shape of the    R curve. 

 

 

Figure 39. Plot of   R as a function of  s . 

As  s  0.0 the spirals become more tightly wound and circular in shape, and their 

lengths increase without limit. This is why we cannot use numerical integration for the 

ray tracing, which would have saved us from a lot of the above mathematical analysis, 

but would have also provided no insights into what happens to rays inside the spheres. 

Figure 40 shows Mathematica plots of spirals with  s = 0.1 and 0.01. We can see the 

effects of these tightly wound spirals in the ray traced images below. 
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             (a)           (b) 

Figure 40. Plots of tightly wound spirals with  s = 0.1 in (a) and  s = 0.01 in (b). 

When  s = 0.0, the spiral is the green counter-clockwise circle on the edge of the gray 

disk in Figure 38. It is extremely unlikely that this will occur in ray tracing because we 

use multi-jittered sampling for antialiasing, where the rays start at random points on the 

surface of each pixel.  

In quadrant II the spirals travel outwards, but in a clockwise direction. The spiral 

(2) is an example. As  s   / 2, the spirals behave the same as they do when  s  

0.0 except that they travel in a clockwise direction. When  s =     / 2, the spiral is the 

green clockwise circle on the edge of the gray disk. 

When  s is in quadrant III with  s  (, 3 / 2), the spirals go in to the center 

as illustrated by the clockwise orange spiral that starts in the direction (4). As  s    / 

2 from the counter-clockwise direction, (that is  s   / 2), the inward going spirals in 

the gray disk become more circular, in the same way as they do in quadrants I and II.  

When  s = 3 / 2 the spiral is a straight line into the center as indicated by the purple 

arrow in the disk. 

When  s is in quadrant IV, the spirals are the same as in quadrant III, except that 

they go in a counter-clockwise direction. We have not drawn any of these in Figure 38 

with  s  (3 / 2, 2). 

 Because the camera rays in quadrants III and IV go to the center where they are 

scattered, they do not form an image. We have to assign black to these pixels, but that is 
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not strictly correct, as discussed below. Equation (21) for   R still gives values in these 

quadrants, as shown on the right side of Figure 39 with the gray background. This 

corresponds to the gray disk in Figure 38. The curve is exactly the same as it is in 

quadrants I and II, but the fate of the spirals is the same, regardless of how long they 

are. Although Figure 38 is drawn with e in a specific location, the analysis holds for all 

locations of e inside the sphere. In summary, only rays in quadrants I and II can get out 

of the sphere, and as rays approach the  b 
 directions from either side, their lengths 

approach infinity. 

What really happens to the rays that as they approach the center? The simple 

answer is, we do not know, but we can make an educated guess. It is likely that as the 

spiral approaches the center, the geometric optics abstraction we use for ray tracing, 

where light travels on infinitely thin rays, will break down. This would be caused by 

infinite value of η at the center. It is then likely that the light is scattered about the 

center, and that we would have to use the wave theory of light, as described by 

Maxwell’s equations to compute what happens. See for example, Hecht (2001). This 

would be a complex process, and it is not worth doing because this is a made-up 

situation. 

 

(b) Results 

 

For the ray tracing, we use the scene shown in Figure 41, where the black sphere 

at the center is the inverse sphere. The remainder of the scene is a ring of colored 

spheres and a checker plane. There is also a blue background, which is not visible in 

this image. 

 

Figure 41. The scene ray traced in the images below. The inverse sphere in the middle is centered on the 

world origin, and has radius 4.0. The x w axis points to the right, the y w axis points out of the paper, and the z w axis 

points straight down. 
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The inverse sphere is black because any rays that hit it from the outside generate spirals 

that end up at the center. Figure 42 shows a set of parallel rays that hit an inverse sphere 

from the outside, with η = 1.0 at the surface. 

                     

Figure 42. A set of parallel rays entering an inverse sphere. 

For rendering scenes with the camera inside, a fisheye camera is best because it allows a 

wider field of view than a pinhole camera. The image in Figure 43(a) was rendered with 

a 180o fisheye camera, where the primary rays go in a hemisphere from the eye point, 

and centered on the viewing direction. Here, the image is the disk; the black areas in the 

corners are there because the fisheye camera produces square images. These could be 

any color, including white. The figure shows distorted images of the spheres, but as it 

turns out, the most interesting thing is the oval shaped band of what looks like noise. 

Figure 43(b) is a zoomed image of a part of the band that is in the rectangle in part (a). 

From the top left we have background, stretched spheres, the checker plane, and then 

even more stretched spheres. This pattern then repeats, and becomes smaller and 

smaller until it disappears into noise. Admittedly that’s hard to see in this image. This is 

a characteristic of fractals, which are self-similar. This means that, no matter how far we 

zoom in, the central part of the image will always look similar, and the noise band will 

never be resolved. See Mandelbrot (1982).  

The fractal is caused by the fact that   R  +∞ when  s  0.0, as discussed 

above. This is a nice discovery, and unexpected. But with hindsight (which is a 

wonderful tool), we could have predicted it from the above analysis and Figures 38 – 

40. The images in Figure 47 will provide further evidence that the fractal is there. 
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                    (a)                                             (b) 

Figure 43. (a) A 180o fisheye camera image when the camera is inside the sphere, (b) a zoomed image 

from inside the rectangle in (a). 

 

The images in Figure 43 are technically incorrect because half of the noise band, and 

the area inside it, are where the camera rays start in the quadrants III and IV in Figure 

38. Because these go into the center of the sphere, these pixels should be black, but here 

we have continued to use the formula for   R in Equation (21), and traced the rays. The 

graph for   R in these quadrants is in the right half of Figure 39 with the gray 

background. The graph is identical to one in left half, and therefore the fractal pattern on 

the inner half of the noise band is similar to the one on the outside. 

Figure 44 is Figure 43(b) rendered with black pixels. The border is in the middle 

of the noise band, where   R =  ∞. In the following images, we have used both 

techniques. Although there’s no technical justification for tracing all the rays, it does 

make the images more interesting. 

 

 

 

 

 

 

 

Figure 44. Figure 43 rendered with black pixels for the in-going rays. 
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Figure 45 shows two more 180o fisheye camera views with only the outgoing rays 

rendered. In part (b) the camera is looking horizontally. 

 

   

           (a)                                    (b) 

Figure 45. Two 180o fisheye camera images where the camera is inside the sphere. 

The best way to demonstrate that a fractal is present is to repeatedly zoom into an 

image, and observe what happens. A fisheye camera is also best for this because we can 

zoom in by reducing the field of view (fov). Figure 46 shows fisheye images where the 

camera is looking horizontally, and at right angles to the radial direction. This is in the  

b 
 direction in Figure 6.14. We have also traced all the rays. The images start with fov 

= 360o in (a), and end with fov = 2o in (f). These figures show progressively smaller 

amounts of the background color because two of the spheres touch in the middle of the 

images. Parts (e) and (f) look like abstract art, but need to be seen in high resolution 

square images to be fully appreciated. Unfortunately, the shading of the external spheres 

is not consistent in these images. As we zoom in, the details on either side of the noise 

band changes, but the noise band is always there. This is similar to zooming into the 

Mandelbrot set (Mandelbrot, 1982), which is two-dimensional, but here the fractal near 

the horizon is one-dimensional. Part (a) shows that the noise band splits in two at the 

top and bottom of the image, but the only way to see that in more detail would be to 

render higher resolution images. 
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                            (a)                (b) 

   

                           (c)                         (d) 

          

              (e)                         (f) 

Figure 46. Horizontal fisheye camera images with fov = 360 
o in (a), 180 

o in (b), 90 
o in (c), 32 

o in (d), 

16 
o in (e), and 2o in (f). The camera is located at (2.0, 0.0, 0.0), and the look-at point is (2.0, 0.0, -2.0).  
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Because the noise band is much wider in Figure 46(f), than it is in (e), it may appear 

that the fractal is not self-similar, but this is caused by the low effective pixel 

resolutions of the displayed images, which cannot resolve the fine details near the 

centers. Figure 47 shows expanded strips across the centers of both images, which 

almost identical. 

 

 

 
 

Figure 47. Expanded strips cross the centers of Figure 46 parts (e) and (f), with (e) on the top. 

 

Because of the camera orientation in Figure 46, if we did not trace the ingoing rays, the 

left half of each image would be black. Figure 48 shows the results for parts (a) and (e). 

 

 

  

                         (a)                                  (b) 

Figure 48. Correctly rendered versions Figure 6.25(a) in (a) and 6.25(e) in (b). 

Figure 49 shows two views where the camera is looking radially out of the sphere in the 

x w direction, with the look-at point (4.0, 0.0, 0.0). In part (a), where the fov = 180o , the 

noise band is around the edge of the image. This is where  s  0.0 and  s   / 2 in 

quadrants I and II. Here, no primary rays are shot into quadrants III and IV. In part (b) 

where the fov = 360o , the image in (a) is compressed towards the center, and there is no 

noise band around the edge. 
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              (a)                   (b) 

Figure 49. Horizontal fisheye camera images looking radially out of the sphere with fov = 180  
o in (a), 

and fov = 360 
o in (b). 

 

Figure 50 shows the result when we return black for the rays in quadrants III and IV, 

which is correct, but doesn’t have quite the appeal of Figure 49(b). 

 

 

Figure 50. Correctly rendered version of Figure 6.25(b). 

A nice feature of the Fisheye camera in the ray tracer is that we can use a field of view 

that is larger the 360o. This can create multiple wrap-around views of a scene. As an 

example, Figure 51 is Figure 49 rendered with the fov = 3600o. This is of no use 

scientifically, but it is interesting to look at. The small inner circle is the 360o view from 

Figure 46(a), but rendered with the dark spheres in parts (b) – (d). This is surrounded by 

9 wrap-around images. 
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Figure 51. Fantasy version of Figure 6.28(b) rendered with the fov = 3600o. 

Figure 52(a) is a pinhole camera image where striations are visible in the noise band. 

These are just the red spheres stretched out. The noise band in the fisheye image in part 

(b) appears to have a specular highlight at the bottom, but this is an illusion created by 

the light gray checkers lined up underneath it. We would need a much higher resolution 

image to see this properly. 

   

         (a)                (b) 

                Figure 52. (a) Pinhole camera image, (b) fisheye camera image with fov = 360 
o. 
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In Figure 53 the inverse sphere has been shifted vertically in the y w direction, which 

allows distorted top-down images of the ring of spheres to be rendered. These look like 

the petals of a flower.  

 

    

Figure 53. Two fisheye camera images where the inverse sphere has been raised  vertically. 
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6 Realistic Ray Tracer 

In the previous chapter we have used standard ray tracer and standard 3D objects 

to render and study different materials. e.g. glossy materials and variable (ior). In this 

chapter we have extended our work to work with more sophisticated software and more 

complex 3D models. 

  

6.1 LuxRender 
 

We ported our Runge-Kutta implementation to LuxRender, which is a multi-

platform open source physical based renderer. See latest version 

www.luxcorerender.org . Using LuxRender allows us to render more realistic images of 

spheres with spatially varying indices of refraction because it is physically based. We 

have tested our Runge-Kutta technique with Luneberg and Gaussian spheres. 

 

6.1.1 Generalized Luneberg lenses 

 

Figure 54 shows two Luneberg lenses rendered with an area light. In part (a), the 

constant C in Equation (16) is equal to 3.0, and in part (b), C = 2.0. In (a) the reflection 

of the light is visible on the inside and outside surfaces of the sphere, because according 

to Equation (16),  = 2.0 = 1.414 at the surface. In contrast, there are no reflections in 

(b) because when C = 2.0,  = 1.0 at the surface, and therefore k r = 1.0 on the inside and 

outside surfaces according to the Fresnel Equations (5) – (7). 

        

             (a)                                         (b) 

Figure 54. Luneberg spheres rendered with C = 3.0 in (a) and C = 2.0 in (b). 

http://www.luxcorerender.org/
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6.1.2 Gaussian spheres 

 

In these spheres, η is given by the inverse exponential function 

 

𝜂 = 𝑎 𝑒
   

  

       
 

where a and b are arbitrary constants, and R is the radius. This is also known as a 

Gaussian function. When r = 0.0, η = a  , and when r = R  , η = a e 
–b. When b = log a  , η 

= 1.0 at the surface for all values of the radius. Figure 55 shows two Gaussian spheres 

rendered with η = 1.0 at the surface. In part (a), a = 1.25, and in part (b), a = 1.4. As we 

can see, the small change in a makes a big difference in the refraction. 

 

    

              (a)                                 (b) 

Figure 55. Gaussian spheres rendered with a = 1.25 in (a) and a = 1.5 in (b). 

  

6.2 Vase Case Study 
 

We modeled a vase in Autodesk Maya with a high-density triangle mesh, and 

rendered it with different materials and rendering techniques. In Figure 56(a), the vase 

has a dielectric material with a constant filter color, and it has been rendered with an 

area light and path tracing. This has produced a colored caustic. In Figure  56(b) the 

material is a glossy transmitter with a noise based filter color, and is rendered with 

Whitted ray tracing and ambient occlusion to produce the soft shadow. 
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                               (a)                            (b) 

Figure 56. (a) Vase with dielectric material and constant color filter, (b) vase with glossy transmitter 

material and a noise-based filter color. 

 

As a final result, we rendered the vase with a glossy transmitter material, a rainbow 

ramp texture filter, an area light, and path tracing, to produce a colored caustic. The 

noise is present because we were not able to use enough samples per pixel. Combining 

glossy transmission, a noise-based textured filter color, and path tracing with an area 

light source that was just large enough to produce soft shadows, took a long time to 

render. But the result is still a nice image. 
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Figure 57. The final image of the vase. 
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7 Discussion 

In this chapter we discuss the related issues we faced when applying features to 

the ray tracer. 

 

7.1 Textured Filter Colors 
 

We have used Whitted style ray tracing to render dielectric materials where the 

filter color is a noise-based 3D texture. To compute the total filter color along each ray, 

we sampled the texture at multiple points along the rays, and used Beer’s law to 

compute the amount of filtering between each pair of points. Because the texture is the 

sum of a random function and its octaves, the points have to be close enough together to 

accurately sample the highest octave. We need to develop a test for this. 

 We also rendered a material with a wrapped noise-based texture where there are 

finite discontinuities in the texture, and therefore the color. These result in ridges in the 

rendered images. Previously, wrapped textures had only been rendered on opaque 

materials. If wrapped textures were used with glossy transmission, they may be able to 

simulate cracks in materials like frosted glass. We need to investigate this. 

 

7.2 Surface Based Variable Index of Refraction 
 

We rendered a clear dielectric sphere where the index of refraction  at the 

surface is determined by a noise-based texture, but inside  is constant along each ray. 

This resulted in an interesting image, but we need to explore this technique with 

different surface textures, and combine it with interior textured filter colors. 

 

7.3 Interior Variable Index of Refraction 
 

We ray traced three types of spheres where the index of refraction varies with 

the distance from their centers.  

 

7.3.1 Generalized Luneberg Lenses 
 

These were ray traced by Suffern and Getto (1991) using the analytic formula 

for the interior ray paths. In contrast, we used Runge-Kutta numerical integration 

because this is often simpler to implement. The formula for η is in Equation (6.1), 

where C is a constant. As C increases, η increases as well, but varies less from the center 
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to the surface. For large values of C , the spheres therefore become like constant η 

dielectrics, but with un-physically large values of η. We used Mathematica to plot a set 

of internal and external rays for C = 3.0 and C = 10.0, and ray traced a scene of these 

spheres with the camera outside. Because of the Fresnel equations (5) – (7), the spheres 

become more reflective as C increases. This is evident in Figure 30(b) where the 

reflections of the checkered square and backgrounds are much brighter than they are in 

Figure 29(b), where C = 3.0.  

 

 

7.3.2 Inverse r spheres 

 

Here, η = k  / r , where r is the distance from the center, and k is a constant. This is 

as simple as it can get, and the ray paths are logarithmic spirals. But in spite of their 

simplicity, these spheres produced by far the most interesting results when we placed 

the cameras inside them. The reason is that circles are a special case of the spirals, and 

as the spirals become more circular, their lengths inside the spheres increase without 

limit. As an example, Figure 42 shows two nearly circular spirals. This had two 

consequences. First, it prevented us from using numerical integration to trace the rays, 

so that we had to use mathematics to compute where the camera rays went, and what 

happened to them. This process was surprisingly long and complex. Second, it produced 

fractals in the images which could not have been rendered with numerical integration. 

These are created as the camera ray directions approach a plane that’s perpendicular to 

the line between the center of the sphere and the camera’s eye point. Figure 38 

illustrates these in 2D; Figure 39 illustrates how the angle   R , where the ray hits the 

inside of the sphere, approaches  ∞ as the ray directions approach the plane.  

To show that the images really are fractals, we used a fisheye camera looking in 

the plane, and zoomed in from a 360o view to a 2o view. The resulting images are in 

Figures 46 and 47. In Figure 46(a) the fractal runs up and down the middle of the 

image, where it is hard to see, and then runs around the edge. Figure 47 shows that the 

fractal is self-similar, because the general appearance of the central part doesn’t change 

as we zoom in. Figure 46(e) looks like an example of modern art, but it would look 

better if it was rendered with a pinhole camera, because that produces square images.  
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These images are not strictly correct because in their left halves, the rays go into 

the center of the sphere, and so these should be black. We have also rendered images 

where we have done this correctly. 

There is more work to do with these spheres. The images we have rendered all 

have η = 1.0 at the surface, and therefore there is no refraction. We need to render these 

with η s > 1.0. Although η = 2.42 for diamond is the largest η for real dielectrics (Table 

1), there is no limit for η s with the inverse spheres. We can therefore explore the optical 

environment inside the spheres with arbitrarily large values of η s . There are however, 

surface effects that should be taken into account. According to the Fresnel equations (5) 

– (7), in the limit  η s  ∞, a dielectric looks like a perfect mirror viewed from the 

outside, and no light gets in. When viewed from the inside, the surface also appears as a 

perfect mirror, and no light gets out. If we were ray tracing an inverse sphere from the 

inside, the outside view would therefore become darker as η s increased. (Of course, the 

same surface behavior would apply any object with a constant η.) 

Another problem we would like to look at involves placing a reflective sphere 

inside an inverse sphere. If we ray traced the inverse sphere from the outside, it would 

no longer appear black because some rays would hit the sphere, be reflected off it, leave 

the inverse sphere, and then return radiance to the camera. What would the reflective 

sphere look like? This would very much depend on its size, and where it is inside, 

relative to the camera. What would it look like when the camera is also inside the 

inverse sphere? 

The mathematical problem can be stated quite simply. How do we intersect a 

logarithmic spiral with a circle? Unfortunately, the answer is not simple to find, because 

the spiral can intersect the circle an unlimited number of times as it becomes more 

circular, and we need to find the first intersection along the spiral from the camera. One 

approach would be to use the formula for the arc length along the spiral to compute a 

series of points along it, starting from the camera. If the distances between these were 

considerably smaller than the sphere radius, we could compute the square of the 

distance between each point and the sphere center, and stop when it’s less than the 

square of the sphere radius. We could then use linear interpolation between the last two 

points to compute the intersection with the sphere. This should work provided we keep 

the sphere away from the fractal zones. We could then apply this technique recursively 

to the reflected rays, which could also hit the sphere, and could also be in a fractal zone 
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as seen from their starting points on the sphere. We would also have to test if the rays 

have hit the surface of the inverse sphere, and do this at every step. Finally, we would 

have to stop the process after some maximum number of points have been generated 

with no intersection. It would be fascinating to see what the sphere looks like, 

particularly when it and the camera are on opposite sides of the inverse sphere center, 

and when the reflective sphere approaches a fractal zone. Stereo images would also be 

interesting to do. 

When this research is finished, we will submit it for publication, along with 

some of the material presented here. 

 

7.4 Vase Case Study 
 

In Chapter 6 we modeled a vase, and rendered it with a number of materials and 

ray tracing techniques. Although we produced some nice images using our ray tracer 

and LuxRender, a lack of computing power limited what we could do. 
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8 Conclusion 

 

We have presented in this thesis two different solutions, analytically for the 

inverse r sphere and numerically Runge-Kutta for the Luneberg spheres. Then we 

applied a different model i.e. glossy transmitter to produce frosted glass shader. We also 

developed a new Textured shader for both the color filter and the index of refraction, 

which produce nice images. We have tested our approach with another software and we 

can deal easily with complex objects such the vase we have modeled. 

Finally, we have studied and implemented fractals formation when we have used 

inside camera and the inverse r sphere. Some other fractals famous examples: 

Mandelbrot set (Mandelbrot, 1982) and fractals showed in Saturn’s rings. See below 

figures from NASA:  

(a)                                                                                (b) 

Figure 58  (a) Saturn’s ring image from NASA. (b) Zoomed image of Saturn’s ring. 

 

We can see how fractals are formed in Mandelbrot set in the figure below: 

 

Figure 59: Mandelbrot set zoomed x1 – x2000  
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APPENDIX 

 

A1 Data Flow diagram 
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A2 Wolfram Mathematica 

 

A2.1 Code 

ClearAll["Global`*"]; (* clear all variables *) 

Show  

Table  

e = {ex, ey}; (* eye 2D vector *) 

d = {dx, dy}; (* direction 2D vector *) 

R = 1; (* radius of the sphere *) 

(* eye position *) 

ex = -0.1; 

ey = 0.5; 

(* previous direction setup *) 

(*dx =Cos[ϕ]; dy =Sin[ϕ];*) 

(*dx=-2; dy=0.5b;*)(* e eye point component and d direction component *) 

(*dx=1;dy=0;*) 

(* psi s previous calculation, now psi is range from -Pi to Pi loop*) 

(*ψs=ArcCos ey dx - ex dy Sqrt ex^2+ey^2 ;*) 

(* theta s *) 

θs = ArcTan[ex, ey]; 

(* theta R *) 

(*θR= θs+Log R Sqrt[ex^2+ey^2 Tan*ψs];*) 

(* avoid psi = 0 or Pi 2 *) 

If*ψs ⩵ 0, ψs = 0.00001, ψs]; 

If[Tan*ψs] === ComplexInfinity, ψs = 0.00001, ψs]; 

(* parametric equation in term of x,y and θ *) 

x = Sqrt[ex^2 + ey^2] Cos*θ+ Exp[Tan*ψs+ (θ - θs)]; 

y = Sqrt[ex^2 + ey^2] Sin*θ+ Exp[Tan*ψs+ (θ - θs)]; 

(* polar equation in term of r and θ *) 

r = Sqrt[ex^2 + ey^2] Exp[Tan*ψs+ (θ - θs)]; 

(* mathematica ParametricPlot *) 

plotXY = ParametricPlot[{x, y}, ,θ, θs, Sign*ψs] 2 Pi}, 

PlotStyle → Directive[AbsoluteThickness[0.01], Blue]]; 

(* mirror cut line *) 

(*mirror=ParametricPlot[{(ey/ex) t,(ey/ex )t},{t,-5,5}];*) 

mirror = Plot[(ey / ex) t, {t, -5, 5}, PlotStyle -> Dashed]; 

(* mathematica PolarPlot *) 

(*plotR = PolarPlot[r,,θ,θs, θR}, 

PlotStyle→Directive[AbsoluteThickness[0.01],Blue]];*) 

(* draw start point ps when theta = thetas *) 

Block*,θ = θs}, ps = Graphics[{Red, PointSize[0.015], Point[{x, y}]}]]; 

Show[plotXY, ps, mirror], 

(* loop for psi value, used offset = 0.01 *) 

s, -Pi, Pi, Pi 8 , 

(* mathematica circle draw *) 

Graphics[{Circle[{0, 0}, R]}] , 

AspectRatio → 1, PlotRange → ,,-2, 2}, {-2, 2}} 
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A2.2 Plot 

 

 

A3 C++ Source Code 

 

A3.1 RungeKutta.cpp 

 

double h = 0.01; 
  //  double h = 0.02; 
  double sx, su, sy, sv, sz, sw; 
  double k11, k12, k13, k14, k15, k16; 
  double k21, k22, k23, k24, k25, k26; 
  double k31, k32, k33, k34, k35, k36; 
  double k41, k42, k43, k44, k45, k46; 
 
  sx = ray.o.x; 
  sy = ray.o.y; 
  sz = ray.o.z; 
 
  su = f(sx, sy, sz) * ray.d.x; 
  sv = f(sx, sy, sz) * ray.d.y; 
  sw = f(sx, sy, sz) * ray.d.z; 
 
  /*su = eta * ray.d.x; 
  sv = eta * ray.d.y; 
  sw = eta * ray.d.z;*/ 
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  bool condition = true; 
  vector<Point3D> ray_points;   // local array of points 

Point3D position(sx, sy, sz); // initial position on the 
transmitted ray 

 ray_points.push_back(position); // store hit point in the array 

 

A3.2 Inverse r sphere 

 

RGBColor 
Whitted::trace_ray(const Ray ray, Light* lt, const int depth) const { 
 
 if (depth > world_ptr->vp.max_depth) 
  return (black); 
 else 
 { 
 
  double ex, ey, ez, dx, dy, dz; 
  double cx = 0; 
  double cy = 0; 
  double cz = 0; 
 
  Point3D e(ray.o);   //eye 
  Vector3D d(ray.d);   //direction 
  Point3D c(cx, cy, cz); 
 
  Vector3D du = d / d.length();  //unit vector d 
 
  double s = (e - c).length(); 
 
  Vector3D b = (e - c) / s;   //vector b 
 
  Vector3D w = (b^du) / (b^du).length();  //vector w 
 
  Vector3D bp = w^b;      //vector bp 
 
  double psi = atan(sqrt(1 - pow(bp*du, 2)) / (bp*du)); //psi 
 
  double thetas = asin(((e - c)*bp) / (e - c).length()*bp.length());
 //theta S 
 
  double thetar = thetas + log(R / s) / tan(psi);   
  //theta R 
 
  //elhoni 
  double theta = -2*PI; 
  double r = 0; 
  double l; 
  Vector3D p; 
 
  while (theta < 2*PI) 
  { 
    
   // general spiral equation 
   r = s* exp(tan(psi)*(theta - thetas)); 
    
   // if r gratear than radius break 
   if (r >= R) { r = R; break; }; 
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   // below steps for computing l componenet and its 
dervivative 
 
   l = -s * cos(thetar) + sqrt(s*s*cos(thetar)*cos(thetar) + 
r*r - s*s); 
 
   double lc = l*cos(thetar); 
 
   double ls = l * sin(thetar); 
 
   p = lc*b + ls*bp + e;  //point equation 3D 
 
   // inside sphere point center location 
   Point3D cis(2.0, 0.0, 0.0); 
 
   // if point square - inside sphere center square less than 
radius return red 
   if (((p.x*p.x) - (cis.x*cis.x)) <= 1) 
    return RGBColor(0.7, 0.3, 0.2); 
 
   theta += 0.1; 
 
  } 
 
  l = -s * cos(thetar) + sqrt(s*s*cos(thetar)*cos(thetar) + r*r - 
s*s); 
 
  double lc = l*cos(thetar); 
 
  double ls = l * sin(thetar); 
 
  p = lc*b + ls*bp + e;  //point equation 3D 
 
  // dervative for l component used for computing direction out rays 
  double Dl = s*sin(thetar) - (s*s*cos(thetar)*sin(thetar)) / 
sqrt(r*r - s*s + s*s*cos(thetar)*cos(thetar)); 
 
  double Dlc = -l*sin(thetar) + Dl*cos(thetar); 
 
  double Dls = l*cos(thetar) + Dl*sin(thetar); 
 
  Vector3D pd = Dlc*b + Dls*bp;  // out rays vector 
direction 
 
  Ray test_ray;   // out put ray 
  test_ray.o = p; 
  test_ray.d = pd; 
 
  //Point3D hit_point(sr.w.objects[0]->hit(test_ray)); 
  ShadeRec sr(world_ptr->hit_objects(test_ray)); 
 
  // set up sr 
  if (sr.hit_an_object) { 
   sr.hit_an_object = true;    // we may not need this 
   sr.depth = depth; 
   //sr.ray.o = test_ray.o;  //computed hit point of 
the ray on the inside of the sphere 
   //sr.ray.d = test_ray.d;  //computed ray direction 
at the hit point 
   //sr.ray = test_ray; 
   //sr.normal = -sr.normal; 
   //sr.hit_point = test_ray.o; 
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   //sr.normal = world_ptr->objects[0]->get_normal(test_ray.o); 
 
   //sr.material_ptr = world_ptr->objects[0]-
>get_material();//the dielectric material 
 
   return (sr.material_ptr->shade(sr));     // the standard 
recursive call 
  } 
 
 
  else { 
 
 
   return (world_ptr->background_color); 
  } 
 
   
   
 } 
 
 

} 

 

A4 Autodesk Maya 
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 تتبع الشعاع في المواد الشفافة خلال تغير خواصها الطبيعية

 إعداد
 أحمد عمي الصادق الهوني

 المشرف
 د. محمد العماري
 المشرف المساعد
 د. كيفين سفرين

 
 الملخص

يتم محاكاة المواد الشفافة في تتبع الأشعة باستخدام أشعة الضوء المنعكسة والمرسمة. في 
 الموادىذه الرسالة نقدم تقنية بسيطة لتتبع المواد الشفافة للأشعة حيث يختمف لون المرشح داخل 

ون انعكاس السطح ونقمو براقًا أو لامعًا. يعتمد ذلك عمى تتبع الأشعة حسب الموضع. يمكن أن يك
حيث يختمف مؤشر الانكسار مع  الزجاجيةوتتبع المسار. نقوم أيضًا بتتبع المواد  ويتيد ستايل

نستخدم  الموضع. ينتج عن ذلك مسارات ضوئية منحنية يجب حسابيا عدديًا في بعض الحالات.
ىي المسافة الشعاعية من المركز.  r ، و r / 1متناسبًا مع سات لونبيرقتقنية تتبع الشعاع مع عد

نحن نسمي ىذه المجالات معكوس. نقوم بتحميل مسارات الأشعة الضوئية داخل ىذه المجالات ، 
. تتيح ىذه عين السمكةوالتي ىي لوالب لوغاريتمية ، وتتبعيا الأشعة من الداخل باستخدام كاميرا 

الكاميرا تصوير الأشعة في جميع الاتجاىات من موقع الكاميرا. لقد وجدنا أن الصور الناتجة 
عددًا تحتوي عمى فراكتل واحد أو أكثر ، وقد سمح لنا تحميمنا بفيم كيف تشكمت الفركتلات. قدمنا 

 .من الصور لتأكيد وجود صور النمطي ىندسي متكرر
يم مزىرية في المايا مع شبكة مثمث عالية الدقة ، ونجعميا في كدراسة حالة ، قمنا بتصم

جياز تتبع الأشعة لدينا مع مجموعة متنوعة من المواد وتقنيات تتبع الأشعة. وتشمل ىذه المواد 
الارسال العازلة والمصقول ، ولون مرشح لون قوس قزح ، وتتبع المسار لإنتاج المواد الكاوية 

 .الممونة
العمل لمقيام بو مع المجالات معكوس. نريد أن نتعقبيم عندما يكون ىناك المزيد من 

مؤشر الانكسار عمى السطح أكبر من واحد ، ولو قيم كبيرة بشكل تعسفي. نريد أيضًا وضع كرة 
عاكسة داخل كرة عكسية ، ومعرفة الشكل الذي يبدو عميو عندما نتبعو باستخدام الكاميرا من 

 .الداخل والخارج
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